通过精心编写教案,教师能够提高课堂管理能力,教案的存在使得教学活动更加有序,避免了课堂上因缺乏计划而导致的混乱,下面是写文档范文小编为您分享的高二数学教案6篇,感谢您的参阅。
高二数学教案篇1
一、课前预习目标
理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。
二、预习内容
1、双曲线的几何性质及初步运用。
类比椭圆的几何性质。
2。双曲线的渐近线方程的导出和论证。
观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
课内探究
1、椭圆与双曲线的几何性质异同点分析
2、描述双曲线的渐进线的作用及特征
3、描述双曲线的离心率的作用及特征
4、例、练习尝试训练:
例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
解:
解:
5、双曲线的第二定义
1)。定义(由学生归纳给出)
2)。说明
(七)小结(由学生课后完成)
将双曲线的几何性质按两种标准方程形式列表小结。
作业:
1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。
(1)16x2—9y2=144;
(2)16x2—9y2=—144。
2。求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;
(2)焦距是10,虚轴长是8,焦点在y轴上;
曲线的方程。
点到两准线及右焦点的距离。
高二数学教案篇2
教学目标
(1)了解算法的含义,体会算法思想.
(2)会用自然语言和数学语言描述简单具体问题的算法;
(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力
教学重难点
重点:算法的含义、解二元一次方程组的算法设计.
难点:把自然语言转化为算法语言.
情境导入
电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手.作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:
第一步:观察、等待目标出现(用望远镜或瞄准镜);
第二步:瞄准目标;
第三步:计算(或估测)风速、距离、空气湿度、空气密度;
第四步:根据第三步的结果修正弹着点;
第五步:开枪;
第六步:迅速转移(或隐蔽).
以上这种完成狙击任务的方法、步骤在数学上我们叫算法.
●课堂探究
预习提升
1.定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.
2.描述方式
自然语言、数学语言、形式语言(算法语言)、框图.
3.算法的要求
(1)写出的算法,必须能解决一类问题,且能重复使用;
(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.
4.算法的特征
(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.
(2)确定性:算法的计算规则及相应的计算步骤必须是确定的
(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.
(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续.
(5)不性:解决同一问题的算法可以是不的
高二数学教案篇3
教学目标
1、知识与技能
(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.
2、过程与方法
通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.
3、情态与价值
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.
教学重难点
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.
难点:终边相同的角的表示.
教学工具
投影仪等.
教学过程
?创设情境】
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25
小时,你应当如何将它校准?当时间校准以后,分针转了多少度?
[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.
?探究新知】
1.初中时,我们已学习了角的概念,它是如何定义的呢?
[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点.
2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).
8.学习小结
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直
线上的角的集合.
五、评价设计
1.作业:习题1.1a组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
课后小结
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直
线上的角的集合.
课后习题
作业:
1、习题1.1a组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
高二数学教案篇4
目的要求:
1.复习巩固求曲线的方程的基本步骤;
2.通过教学,逐步提高学生求贡线的方程的能力,灵活掌握解法步骤;
3.渗透“等价转化”、“数形结合”、“整体”思想,培养学生全面分析问题的能力,训练思维的深刻性、广阔性及严密性。
教学重点、难点:
方程的求法教学方法:讲练结合、讨论法
教学过程:
一、学点聚集:
1.曲线c的方程是f(x,y)=0(或方程f(x,y)=0的曲线是c)实质是
①曲线c上任一点的坐标都是方程f(x,y)=0的解
②以方程f(x,y)=0的解为坐标的点都是曲线c上的点
2.求曲线方程的基本步骤
①建系设点;
②寻等列式;
③代换(坐标化);
④化简;
⑤证明(若第四步为恒等变形,则这一步骤可省略)
二、基础训练题:
221.方程x-y=0的曲线是()
a.一条直线和一条双曲线b.两个点c.两条直线d.以上都不对
2.如图,曲线的方程是()
a.x?y?0 b.x?y?0 c.
xy?1 d.
x?1 y3.到原点距离为6的点的轨迹方程是。
4.到x轴的距离与其到y轴的距离之比为2的点的轨迹方程是。
三、例题讲解:
例1:已知一条曲线在y轴右方,它上面的每一点到a?2,0?的距离减去它到y轴的距离的差都是2,求这条曲线的方程。
例2:已知p(1,3)过p作两条互相垂直的直线l
1、l2,它们分别和x轴、y轴交于b、c两点,求线段bc的中点的轨迹方程。
2例3:已知曲线y=x+1和定点a(3,1),b为曲线上任一点,点p在线段ab上,且有bp∶pa=1∶2,当点b在曲线上运动时,求点p的轨迹方程。
巩固练习:
1.长为4的线段ab的两个端点分别在x轴和y轴上滑动,求ab中点m的轨迹方程。
22.已知△abc中,b(-2,0),c(2,0)顶点a在抛物线y=x+1移动,求△abc的重心g的轨迹方程。
思考题:
已知b(-3,0),c(3,0)且三角形abc中bc边上的高为3,求三角形abc的垂心h的轨迹方程。
小结:
1.用直接法求轨迹方程时,所求点满足的条件并不一定直接给出,需要仔细分析才能找到。
2.用坐标转移法求轨迹方程时要注意所求点和动点之间的联系。
作业:
苏大练习第57页例3,教材第72页第3题、第7题。
高二数学教案篇5
?教学目标】
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
?教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
?教学过程】
1.情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?
高二数学教案篇6
一、教材分析
推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。
二、教学目标
(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式
(2)过程与方法:了解合情推理和演绎推理的区别与联系
(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
三、教学重点难点
教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系
教学难点:演绎推理的应用
四、教学方法:探究法
五、课时安排:1课时
六、教学过程
1. 填一填:
① 所有的金属都能够导电,铜是金属,所以 ;
② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ;
③ 奇数都不能被2整除,20xx是奇数,所以 .
2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?
3.小结:
① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.
要点:由_____到_____的推理.
② 讨论:演绎推理与合情推理有什么区别?
③ 思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?
小结:三段论是演绎推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
④ 举例:举出一些用三段论推理的例子.
例1:证明函数 在 上是增函数.
例2:在锐角三角形abc中, ,d,e是垂足. 求证:ab的中点m到d,e的距离相等.
当堂检测:
讨论:因为指数函数 是增函数, 是指数函数,则结论是什么?
讨论:演绎推理怎样才能使得结论正确?
比较:合情推理与演绎推理的区别与联系?
课堂小结
课后练习与提高
1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( )
a.一般的原理原则; b.特定的命题;
c.一般的命题; d.定理、公式.
2.因为对数函数 是增函数(大前提),而 是对数函数(小前提),所以 是增函数(结论).上面的推理的错误是( )
a.大前提错导致结论错; b.小前提错导致结论错;
c.推理形式错导致结论错; d.大前提和小前提都错导致结论错.
3.下面几种推理过程是演绎推理的是( )
a.两条直线平行,同旁内角互补,如果a和b是两条平行直线的同旁内角,则b =180b.由平面三角形的性质,推测空间四面体的性质;.
4.补充下列推理的三段论:
(1)因为互为相反数的两个数的和为0,又因为 与 互为相反数且________________________,所以 =8.
(2)因为_____________________________________,又因为 是无限不循环小数,所以 是无理数.
七、板书设计
八、教学反思
会计实习心得体会最新模板相关文章: