一份详尽的教案是教学成功的基石,为课堂秩序提供了有力支持,教案不仅帮助教师明确教学目标,也是促进教师专业交流的重要工具,以下是写文档范文小编精心为您推荐的平面直角坐标系教案8篇,供大家参考。
平面直角坐标系教案篇1
一、说教材
(一)本节教材所处的地位和作用:
“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。
(二)教材内容的选择
这节课所选用的教学内容是:6.1.2平面直角坐标系(第二课时)。
(三)教学目标的确定
知识目标:能根据坐标(都为整数)描出点的位置,能在方格纸中建立平面直角坐标系,描述事物的位置。
能力目标:通过多不同象限的点的坐标的符号的研究,培养归纳、概括能力。
思想目标:在教学中渗透分类的思想,初步体会数形结合的思想。
教学难点:总结各象限点及坐标轴的坐标的符号。
(四)教学重点、难点的确定
我认为本节课的教学重点是根据点的坐标在直角坐标系中描出点的位置,这是因为:
1.九年义务全日制初级中学数学教学大纲中明确规定要求学生掌握平面直角坐标系,能够使它成为有关论证思维工具。
2.学习知识的目的在于应用,而平面直角坐标系应用相当广泛,它是代数、几何学里最基本,最重要的解题的工具之一。
教学难点:总结各象限点及坐标轴的坐标的符号。是通过学生的探究实现的,用这种方法可以使学生更好的理解、记忆。
二、说教法
根据本节课的内容和学生的实际水平,我采用的是讲练结合的方法。
因为本节课的知识点之一是“象限”,这就需要教师的精讲。教师要引导学生去理解心知,并配合相关的练习,引导学生系统地掌握基础知识和基本技能,培养学生分析问题及解决问题的能力。
三、说学法
通过这节课的教学使学生“会质疑,会尝试”学生有得必先有疑,只有产生疑问学习才有动力。学生通过动手、动脑、动口,通过观察、分析、归纳得出结论,这样使学生感知知识的产生和发展过程,从而使学生达到理解消化的目的。教师不但要让学生学会、更应让他们会学。所以,在教学中我设计了两个探究问题,让他们自己探究,归纳。从而培养学生发现问题、分析问题、解决问题的能力。
四、说课堂程序
(一)以旧带新:
利用上一节课对平面直角坐标系的初步认识,设计了一道口答题,(看图说出各点的坐标)设计意图是复习有关旧知识,可帮助学生理解新知,从而引出新课。
(二)教学新知
1.象限的概念
以教师讲解的方式介绍四个象限的概念。
(设计意图:象限这种概念的教学还是以教师的讲解为宜。)
2.各象限点的坐标的符号情况由学生探究。
具体安排是由例题、练习题作为铺垫进行探究,设计意图是通过学生自己的探究,已有利于对四个象限概念的理解,有有利于对点的坐标的理解。
3,同一图形在不同直角坐标系的坐标不同。也是由学生进行探究,具体由三步组成,一是找坐标轴,二是写坐标,三是从新建立坐标系并写出坐标,由浅入深的进行探究,符合学生认知水平的发展。
4、练习:一部分出现在新课几探究后,一部分出现在新课后,题是平面直角坐标系的变式练习,可考察思维的灵活性和全面性。又体现了平面直角坐标系的实用价值,突出考察思维的全面性和深刻性。
练习的要有一定的梯度,首先,基础型的题,找一名基础稍差的学生来说,增强其信心,其次,作图题,由于题的不是难点,由全体学生笔练完成,不必探究。
(三)总结归纳
本节课的小结,由教师进行小结,一方面可以小结新知,另一方面小结平面直角坐标系的重要性及广泛用途。
(四)作业
a组b组两种领型,分两种层次,即利于面向全体,又利于分类推进。
板书:
6.1.2平面直角坐标系
平面直角坐标系教案篇2
一、教学目标
1、知识与技能目标:认识平面直角坐标系,了解点与坐标的对应关系;
2、过程与方法目标:通过研究平面直角坐标中数与点的对应关系,能根据坐标描出点的位置;
3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。
二、教学重难点
重点:理解平面直角坐标中点与数的一一对应关系;
难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。
三、教学用具
教师准备四张大的纸质坐标格子。
四、教学过程
(一)温故知新,导入新课
游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。
我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。
我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。
(二)新课教学
课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是-4,点b数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。
教师提问1:类似于数轴确定直线上点的位置,能不能找到一种方法来确定平面内点的位置呢?平面内给出任意点a、b、c、d,我们怎么确定这些点的位置
学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小b说我们可以每个点列一个数轴···
教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?
结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?
得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。
那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)
教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。
教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。
教师提问3:在横纵坐标轴上各标一点e、f,问:坐标原点以及这两点的坐标是什么?
教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。
得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。
(三)课程巩固
师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。
“练一练”:
在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。
教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。
(四)小结作业
思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。
五、板书设计
平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成
水平的数轴称为x轴或横轴,习惯上取向右为正方向;
竖直的数轴称为y轴或纵轴,取向上为正方向;
两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系教案篇3
通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数。
另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数。
建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论。
这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴。其它的性质也有其存在的道理。通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程。而点的坐标不同,它在平面上的位置也不相同。即平面上的点与有序实数对是一一对应的从图中可以看出。
例3、在直角坐标系中,描出下列各点
⑴(2,1),(-2,1)
⑵(—3,4),(—3,—4)
⑶(5,-4),(—5,-4)
你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?
解:(从图中观察出的点的位置)特点两点坐标间关系
(1)两点关于y轴对称横坐标为相反数,纵坐标相同
(2)两点关于x轴对称横坐标相同,纵坐标为相反数
(3)两点关于原点对称横坐标互为相反数,纵坐标互为相反数
这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案)。我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然。
以上的规律可以解决很多问题,比如,已知点(—10,3)。求这个点关于x轴、y轴,及原点的对称点的坐标。
答:(—10,—3);(10,3);(10,—3)。
你想过这其中的道理吗?
如两点关于y轴对称。根据轴对称的定义,这两点的连线垂直于y轴,且到y轴的距离相等。所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点。到y轴的距离相等。即这两点的横坐标相反。
类似地,可以组织学生进行其它两种情况的讨论。这个规律只要求学生能理解,并不要求严格地证明。通过学生的主动探索,复习了对称的概念,体验了数形的结合。亲身经历了数学知识的形成过程。也增强了学生的自信心,激发了他们互动探索的精神。
小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程。而且每道题的解决都离不开数形结合的思想。而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系。这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用。
作业:习题13.1b组的1—3。
平面直角坐标系教案篇4
总课时:7课时 使用人:
备课时间:第八周 上课时间:第十周
第4课时:5、2平面直角坐标系(2)
教学目标
知识与技能
1.在给定的直角坐标系下,会根据坐标描出点的位置;
2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。
过程与方法
1.经历画坐标 系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作 交流能力;
2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。
情感态度与价值观
通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。
教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学过程
第一环节 感 受生活中的情境,导入新课(10分钟,学生自己绘图找点)
在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点 的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。
练习:指出下列 各点以及所在象限或坐标轴:
a(-1,-2.5),b(3,-4),c( ,5),d(3,6),e (-2.3,0),f(0, ), g(0,0) (抽取学生作答)
由点找坐标是已知点在直角坐标 系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让 你在直角坐标系中找点,你能找到吗?这就是本节课的内容。
第二环节 分类讨论,探索新知.(15分钟,小组讨论,全班交流)
1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。
(-9,3),(-9,0),(-3,0),( -3,3)
( 学生操作完毕后)
2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
观察所得的图形,你觉得它像什么?
分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?
(出示学生的作品)画出是 这样的吗?这幅图画很美,你们觉得它像什么?
这个图形像一栋房子旁边还有一棵大树。
3.做一做
(出示投影)
在书上已建立的直角坐标系画,要求每位同学独立完成。
(学生描点、画图)
(拿出一位做对的学生的作品投影)
你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?
(像猫脸)
第三环节 学有所用.(10分钟,先独立完成,后小组讨论)
(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
观察所得的图形,你觉得它像什么?(像移动的菱形)
2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。
先独立完成,然后小组讨论是否正确。
第四环节 感悟与收获(5分钟,学生总结,全班交流)
本节课在复习上节课的基础上,通过找点、连 线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。
在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。
第五环节 布置作业
习题5、4
a组(优等生)1、2、3
b组(中等生)1、2
c组(后三分之一生)1、2
平面直角坐标系教案篇5
一:教学目标
1:认识并能画出平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
2:经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识、合作交流意识。
二:教学重点
能画出平面直角坐标系;会根据坐标描出点的位置,由点的位置写出它的坐标。
三:教学难点
能能建立平面直角坐标系;求出点的坐标,由点的位置写出它的坐标。
四:教学时间
三课时
五:教学过程
第一课时
一)引入新课
1:要在平面内确定一个地点的位置需要几个数据?
2:练习如图 你能确定各个景点的位置吗?“大成殿”在“中心广场”西、南各多少个格?“碑林” 在“中心广场”东、北各多少个格?
二)新课
1:我们可以以“中心广场”为原点作两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,你能表示出“碑林”的位置吗?“大成殿”的位置吗?(学生回答,老师小结)
2:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。(通常两条数轴成水平位置与铅直位置,取向上或向右为正方向,水平位置的数轴叫横轴,铅直位置的数轴叫纵轴,它们的公共原点叫直角坐标系的原点。)
平面直角坐标系教案篇6
教学目标:
1.理解平面直角坐标系中的伸缩变换;
2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;
3.会用坐标变换、伸缩变换解决实际问题,体验用数学知识解释生活问题的乐趣。
教学重点:理解平面直角坐标系中的伸缩变换。
教学难点:会用坐标变换、伸缩变换解决实际问题。
授课类型:新授课
教学过程:
一.复习引入
在三角函数图象的学习中,我们研究过下面一些问题:
(1)怎样由正弦曲线y=sinx得到曲线y=sin2x和y=sin?
(2)怎样由正弦曲线y=sinx得到曲线y=2sinx和y=sinx?
作图:
二.新课讲解
引导,观察启发与y=sinx的图象作比较,结论:
1.函数y=sinωx,x?r(ω>0且ω11)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0t;ωt;1)到原来的倍(纵坐标不变)。
2.y=asinx,x?r(a>0且a11)的图象可以看作把正数曲线上的所有点的纵坐标伸长(a>1)或缩短(0设p(x,y)是平面直角坐标系中的任意一点,保持纵坐标y不变,将横坐标x缩为原来的倍,得到p’(x’,y’),那么 ①
我们把①式叫做平面直角坐标系中的一个坐标压缩变换。
设p(x,y)是平面直角坐标系中的任意一点,保持横坐标x不变,将纵坐标y伸长为原来的2倍,得到p’(x’,y’),那么 ②
我们把②式叫做平面直角坐标系中的一个坐标伸长变换。
提出问题:怎样由正弦曲线得到曲线y=2sin2x?(它是由①②两种变换合成的)
平面直角坐标系中的任意一点p(x,y),经过上述变换后变为点p’(x’,y’),那么 ③
我们把③式叫做平面直角坐标系中的坐标伸缩变换。
定义:设p(x,y)是平面直角坐标系中的任意一点,在变换 ④的作用下,点p(x,y)对应到点p’(x’,y’),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
三.例题讲解
例1在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。
(1)2x+3y=0
(2)x2+y2=1
四.课堂练习
课本p8第4题
五.课堂小结
设p(x,y)是平面直角坐标系中的任意一点,在变换 ④的作用下,点p(x,y)对应到点p’(x’,y’),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
六.作业布置
平面直角坐标系教案篇7
1、教材分析:
⑴知识结构:日常生活及其它学科需要一种确定平面内点的位置的方法。在数学上,可以类比数轴,引出平面直角坐标系的概念。完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来。
⑵重点、难点分析:本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标。直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识。通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想。本节的难点是平面直角坐标系中的点与有序实数对间的一一对应。限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成。教材上只给出了比较简单的描述。教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然。
2、教学建议:数学是世界的一部分,同时又隐藏在世界中。这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用。因此,数学概念的产生有其必然性与合理性。
(1)概念的引入。组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的可以让学生进行讨论,他们的生活中还有什么类似的例子。如电影院中的座位,到图书馆找书,学生的课程表等。从丰富的背景材料中,体会数学的广泛应用性。
(2)讲授概念:现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴。数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的这样利用数轴可以研究一些数量关系的问题。确定平面内点的位置的方法也可以与此类似,类比出平面直角坐标系的概念,并结合图形讲述平面直角坐标系的有关概念。
(3)练习,深入地理解概念:平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间。如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等。然后,就可以多练习一些简单题,如给出坐标,在平面直角坐标系中标点,或反之,给出平面直角坐标系中点的位置,找出其坐标。通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系。
总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解。在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构。在相互讨论评价的过程中,培养学生的责任心。
这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出平面直角坐标系的概念,并通过练习达到熟练的程度。第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目。如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等。
教学目标:
1、使学生进一步熟悉由坐标确定点和由点求坐标的方法。理解平面内的点与有序实数对之间的一一对应关系。
2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号。
3、掌握确定已知点关于坐标轴(或原点)的对称点的方法。培养学生观察,归纳总结的能力。
4、培养学生发现问题,主动探索的能力。在与同伴的合作交流中,培养学生的责任心。
5、渗透数形结合的思想,培养学生思维的严谨性和深刻性。
教学重点:
1、掌握象限或坐标轴上的点的坐标的特点。
2、会求已知点关于坐标轴或原点的对称点的坐标。
教学难点:理解平面内的点与有序实数对之间的一一对应关系。
教学用具:直尺、计算机
教学方法:合作学习,讨论,探究
教学过程:
1、提出问题,主动探索
上节课我们学习了平面直角坐标系的概念,并介绍了象限与坐标轴。初步体会到平面内的点与有序实数对是一一对应的今天我们需要开始新的探索,发现数学知识。
下面看例1
例1、指出下列各点所在象限或坐标轴;你能发现什么规律吗?
解:描点画图后,可以从图中观察出,a点在第二象限;b点在第三象限;c点在第四象限;d点在第一象限;e点在x轴上;f点在y轴上。做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?
通过学生的分组讨论后,可总结如下:象限与坐标轴的定义都是以图形的形式直观给出的通过本例题,又总结出了相应的代数规律。渗透了数与形的结合。并培养了学生由特殊到一般的抽象思维能力。
练习:习题13.1的第三题
例2、在直角坐标系中,标出下列各对点的位置,
并发现其中的规律。
(1)(3,5),(2,5)
(2)(1,2),(1,—3)
(3)(4,4),(6,6)
平面直角坐标系教案篇8
一 教材分析
1、教材的地位与作用
本节课的教学内容是义务课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标
根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系,了解点与坐标的对应系;
②在给定的直角坐标系中,能由点的位置写出点坐标。
数学思考:①通过寻找确定位置,发展初步的空间观念;
②通过学习用坐标的位置,渗透数形结合思想
解决问题:通过运用确定点坐标,发展学生的应用意识。
情感态度:
①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;
②通过介绍数学家的故事,渗透理想和情感的。
3、重难点
根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:
重点:认识平面坐标系
难点:根据点的位置写出点的坐标
一、 教法分析
针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。
二、 学法分析
通过教学引导学生关注身边的数学,并借助如何确定点的坐标,培养学生的创新能力和概括表达能力,运用科学家的故事,激发学生勇于挑战困难决心,形成在科学探索中的坚忍不拔的毅力。
三、 教学过程分析
教学流程
创设问题情景,引入新课 → 故事《笛卡儿的梦》,启迪探索问题思路 → 尝试与探索 → 巩固练习 → 总结归纳,布置作业
活动1、孔子曰:“温故而知新”,所以开课我先创建问题(1)用于复习数轴,在复习了相旧知的基础上,引出如果学校东150米有图书馆,如何确定图书馆的位置,从而引出新知,也让学生到数学的发展是随着人们对观察事物认识发展而发展。
活动2、笛卡儿的梦。新课程标准提出学生对数学不仅要关注学习的结果,更要关注他们的学习过程,通过笛卡儿的梦可让学生经历数学问题,产生和解决的过程启迪学生的思维,顺利实现学生对点与坐标的对应关系,由一维到二维过渡,从而达到突出重点、突破难点,通过此过程也让学生体会科学家在探究问题中所表现出的那种精神,培养学生勇于探索,克服困难的品质和意志。
活动3、尝试探索。在尝试中给出直角坐标系和坐标系中的一些点,让学生确定点的坐标,这样有利用巩固重点,并根据反馈情况及时纠正错误,接下来给出另一坐标系和坐标轴上的点,让学生先写出点的坐标,再根据点的坐描述坐标轴上点的特征,这样按排先学一般点的坐标,再探究特殊点的坐标符合学生的学习规律,也更容易理解和掌握。另外,通过数据描述点的特征,有利于发展学生的统计观念。
活动4、巩固训练
①p49第1题用来进一步巩固知识;
②用坐标来表示引例,
②中的问题使所学知识马上得到应用,让学生能体会到知识的应用。
活动5、总结归纳。根据教师所提出的问题让学生归纳有利于培养学生的归纳能力和表述能力,利用“人生就是一个坐标”及时对学生进行理想,有利于学生人格的塑造。
会计实习心得体会最新模板相关文章: